
You may...

 ... use the Design Cards for private purposes and at work
 ... print them on paper
 ... copy and distribute them

You may NOT...

 ... modify the cards in any way
 ... sell this pdf, printed copies thereof, etc.

unless you have prior written permission to do so.

design-types.net design-types.net

Dimensions

simple stands for simple solutions, no magic,
 nothing sophisticated but easy to read and
 maintain.
powerful stands for foresighted solutions, ge-
 neric and flexible.
abstract stands for having the big picture in
 mind and keeping the bird’s eye view.
concrete stands for knowing the details, being
 able to breathe code likea fish can breathe
 water.
pragmatic stands for creating value with a
 very customer-focused perspective.
idealistic stands for focusing on quality and
 professionalism, for avoiding dirty hacks and
 80 percent solutions.
robust stands for stability and reduction of
 risks.
technologic stands for the potential new tech-
 nology offers.

There are four dimensions:
 simple vs. powerful (green)
 abstract vs. concrete (blue)
 pragmatic vs. idealistic (red)
 robust vs. technologic (yellow)
Each dimension represents two contrary but re-
lated perspectives on design and each argu-
ment card provides a distinct aspect relevant
from this perspective.

design-types.net

Card-based Discussions

Use Case
Use this when discussions about software de-
sign are not productive because:
 • some participants have difficulties to ex-
 press their thoughts
 • the discussion itself lacks sound argumen-
 tation or
 • a single developer dominates the discus-
 sion.

Preparation
 1) Start with reading the cards carefully and
 get familiar with the arguments.
 2) Start with the basic set () and build a
 deck of not more than 20 cards.
 3) Each developer participating in the discus-
 sion should have an own deck.

Basic Rules
 1) When you play a card, explain how this ar-
 gument is applied in the concrete situation.
 2) You may only play one card at a time. Then
 it's your colleague’s turn. Either use one
 card from your deck or the card your col-
 league has just played.
 3) You can also play a question or action
 card but also only one at a time.

design-types.net

Games
Use Case and Preparation

Use the quiz and the learning game to get fa-
miliar with the Design Cards and with argu-
ments and principles of software design. Use a
single card set and read the cards before
playing. Start with the basic set () and add
the other cards once you are familiar with it.

More Game Ideas
There are alternative rules and more ideas for
games online: design-types.net/cardgames

Rules for 2+ Players
 1) Shuffle the cards.
 2) Take turns. When it’s your turn, one of the
 other players draws a card and reads the
 title to you.
 3) If you can correctly explain the card based
 on the title, you get a point.
 4) If your answer is not correct the other play-
 ers get a chance.
 5) In any case read the card aloud. Then it's
 the next player’s turn—even if this person
 already got a point by explaning your card.
 6) The game ends after 5 rounds (adjust
 based on the time you want to spend).
 7) The player with the most points wins.

Quiz

design-types.net

Conflicting Principles
Each principle describes a certain aspect of the
problem. KISS for example tells you, that a so-
lution is better when it is simpler. RoP on the
other hand says that a more generic solution is
better than a specific one. This is a typical ex-
ample of two con-flicting principles. Both princi-
ples are valid but there is no totally generic so-
lution that is also maximally simple.

If there are two competing solutions, there are
two quite different scenarios for the discussion:
 a) One of the solutions is strictly better than
the other, so in the current example it's simpler
and more generic.
 b) Both solutions are Pareto optimal, i.e. one
of the solutions is simpler, the other more
generic. Then you have to make a trade-off.

Keep sure that you find out which kind of
situation you have.

A: generic but complex
B: simple but specific
C, D: typical trade-offs
E: bad solution

R
o

P

KISS

A
C

D

BE

design-types.net

Matthias Wittum & Christian Rehn GbR
Goethestr. 23
76474 Au am Rhein / Germany
email@design-types.net

Imprint

Design Cards

Design Cards are a means to improve discus-
sions among software developers.

Use them for:
 ‣ Code reviews
 ‣ Pair programming
 ‣ Architectural discussions
 ‣ Justifying decisions
 ‣ Learning design aspects

Use arguments from different dimensions to en-
sure that you don't miss important aspects. Use
question cards to point out relevant questions
and use action cards to make progress if a dis-
cussion gets stuck.

Detailed instructions:
design-types.net/cards

design-types.net

Learning Game
Rules for 4+ Players

 1) Split up into two teams who will play
 against each other.
 2) Remove action and question cards and
 shuffle the rest.
 3) Take turns. When it’s your turn, draw a
 card, read it quietly and try to explain the
 card without mentioning the words in the
 title or synonyms/antonyms thereof.
 TIP: Read the card carefully and use the
 examples given.
 4) While you explain, your team member(s)
 have 90 sec. to guess the title. If they man-
 age to do so, your team gets a point.
 5) If your team members couldn’t guess cor-
 rectly, the opposing team gets one single
 guess to get a point for themselves.
 6) In any case read the card aloud. Then it’s
 the turn of the other team.
 7) Every player should get the chance to
 explain and to guess. So also take turns
 within the teams.
 8) The game ends after each team has read 5
 cards (adjust based on the time you want
 to spend).
 9) The team with the most points wins.

design-types.net

Card-based Discussions

Advanced Rules
Moderator: It can be helpful to have a kind of
 moderator. This person should get the or-
 ange cards (questions and actions).
All-in: Think both for ten minutes and lay down
 your top three arguments at the same time.
 Then explain and start the discussion.

Base agreement: Decide together on a partic-
 ular dimension, aspect, or card that is espec-
 ially important for your project. Put it on a
 special place at the table (as reminder) so
 everybody is aware of this focus during the
 card based discussion.
Focus: When you realize that you often neglect
 a certain aspect, tape the respective card on
 your screen.

There are more rules and sugestions online:

 design-types.net/cards

Other Use Cases

design-types.net

KISS: Keep It Simple Stupid

KISS
»Simple means readable,

maintainable, and less error-prone.
Overengineering is harmful.«

Complex code contains more bugs and it has to
be maintained (maybe even by other people). To
others, it may seem obscure which can lead to
frustration and bad code quality. Striving for
simplicity means to avoid having large modules
(methods/classes/...), many modules (methods/
classes/...), as well as inheritance, low-level
optimization, complex algorithms, fancy (lan-
guage) features, configurability, etc.

↑CF, ↓RoP, ↓NFR, ↓LC

design-types.net

YAGNI: You Ain’t Gonna Need It

YAGNI
»It’s currently not necessary,

and we even have to maintain it!«
Code needs to be maintained. The more you
have, the more complexity there will be. Adding
features and capabilities that are not used (yet),
wastes time twice: When you write the code and
when you change or just read it. This becomes
even more painful when you finally try to re-
move this dead code. So avoid runtime-configu-
ration, premature optimization, and features
that are only there “for the sake of complete-
ness”. If they are needed, add them later.

↑CF, ↓PSPG, ↓TP, ⇅FP

design-types.net

EUHM: Easy to Use
 and Hard to Misuse

EUHM
»It shouldn’t require much

discipline or special knowledge
to use or extend that module.«

Some day there will be a new colleague who
hasn’t read the docs. Some day it will be Friday
evening right before the deadline. No matter
how disciplined or smart you are, some day
somebody will cut corners. So better have the
obvious way of usage be the correct one. Have
the compiler or the unit tests fail in case of
errors and keep sure that changing a module
does not require much understanding.

↑ML, ↑PSU, ↑UP, ⇅KISS

design-types.net

RoE: Rule of Explicitness

RoE
»Explicit solutions are

less error-prone and easier to
understand and debug.«

Implicit solutions require the developer to have
a deeper understanding of the module, as it is
necessary to “read between the lines”. Explicit
solutions are less error-prone and easier to
maintain. So better avoid configurability, un-
necessary abstractions and indirection (events,
listeners, observers, etc.).

↑KISS, ↓RoP, ↓LC, ⇅FP

design-types.netdesign-types.net design-types.netdesign-types.net

design-types.netdesign-types.net design-types.netdesign-types.net

design-types.net

RoP: Rule of Power

RoP
»Foresighted, generic solutions are
reusable and future requirements

will be addressed, too.«

A powerful solution is better than a less potent
one. Foresighted solutions reduce the necessity
of refactoring and are more stable over time.
Generic solutions often need less code and ad-
ditionally offer extensibility by design. So bet-
ter use abstractions, indirection, GoF patterns,
polymorphism, etc.

↑FP, ↑DRY, ↓YAGNI, ↓CF

design-types.net

FP: Flexibility Principle

FP
»We have to make sure that we

can change that later on.«

While it is often not necessary to implement a
fully generic solution, in many cases it is impor-
tant to be flexible. Even if a generic solution
isn’t implemented right away, it must still be
possible to do so. E.g. if you don’t want to im-
plement runtime-configurability, at least have a
constant ready to be made configurable. Make
sure that the solution does not spoil or hinder
future changes or enhancements.

↑RoP, ↑LC, ↑ML, ↓ICC

design-types.net

NFR: Non-Functional
 Requirements

NFR
»We have to think about NFRs

now. Adding these qualities later
will be very hard.«

Software needs to be efficient, scalable, secure,
usable, maintainable, testable, resilient, reli-
able, compliant with (data privacy) regulations,
etc. These qualities have a huge impact on the
architecture. You might need to choose certain
technologies for performance, use microser-
vices for scalability, or provide redundant sub-
systems for reliability. Thinking about this later
results in waste and additional cost/effort.

↑ML, ↓YAGNI, ↓KISS, ⇅FP

design-types.net

ECV: Encapsulate the Concept
 that Varies

ECV
»Changing parts of the software

should get their own
module or abstraction.«

If you have to change your software, you’d like
those changes to be isolated, so you don’t have
to change half your system. So put the chang-
ing parts into separate modules. Isolate chang-
ing APIs via gateway classes, data access tech-
nology using DAOs, encapsulate algorithms
using the strategy pattern, etc. Conversely,
don’t use abstractions for those parts that
won’t change.

↑RoP, ↑IH/E, ↓YAGNI, ↓RoE

design-types.net design-types.net

design-types.net design-types.net

design-types.net

LC: Low Coupling

LC
»Tight coupling creates

ripple-effects and makes
the code less maintainable.«

If you decouple, you don’t need to know inter-
nal details about other parts of the system. Fur-
thermore, it makes you independent of changes
in those other parts and it even enables reuse.
So better reduce the number of dependencies
and assumptions about other modules, use nar-
row interfaces, additional layers, indirection,
dependency injection, observers, messaging,
etc.

↑FP, ↑ML, ↓KISS, ⇅SRP

design-types.net

SRP: Single Responsibility
 Principle

SRP
»One module should do

one thing only.«
If there is more than one reason to change a
certain module (method/class/artifact/...), i.e.
the module has more than one responsibility,
then code becomes fragile. Changing one res-
ponsibility may result in involuntary changes to
the other. Furthermore, changing the module is
more difficult and takes more time. And even
when you don’t change the module at all, un-
derstanding it is more complex. So better sepa-
rate concerns into separate modules.

↑PSU, ↑IOSP, ⇅LC, ⇅KISS

design-types.net

ADP: Acyclic Dependencies
 Principle

ADP
»Cyclic dependencies

create rigid structures.«

Cyclic dependencies result in all sorts of nasty
consequences: tight couplings, deadlocks, infi-
nite recursions, ripple effects, bad maintain-
ability, etc. The larger the cycle, the worse the
consequences will get and the harder they are
to understand and to break apart. So avoid
them by using dependency inversion, publish-
subscribe mechanisms or just by assigning
responsibilities to modules hierarchically.

↑LC, ↑ML, ↓RoE, ↓ICC

design-types.net

IOSP: Integration Operation
 Segregation Principle

IOSP
»A module should either contain
business logic or integrate other

modules but not both.«
Either a module (method/class/...) is an opera-
tion, i.e. it contains business logic and/or API
calls or it is an integration, i.e. it calls other
modules. That means operations should never
call other modules and integrations should have
no business logic and no API calls. Operations
are easy to read, test, and reuse. And integra-
tions are very simple, too. This ensures that
modules are small and systems well-structured.

↑LC, ↑SRP, ⇅KISS, ⇅PSU

design-types.net design-types.net

design-types.net design-types.net

design-types.net

DRY: Don’t Repeat Yourself

DRY
»Duplication makes

changing the code cumbersome
and leads to bugs.«

Having a functionality more than once means to
update or bug-fix it at every occurrence which
is more error-prone and more effort. Refactor-
ings like method or class extraction may help as
well as inheritance, higher-order functions,
polymorphism, and some design patterns.

↑RoP, ↑PoQ, ↓KISS, ↓PSU

design-types.net

IH/E: Information Hiding/
 Encapsulation

IH/E
»Only what is hidden,

can be changed without risk.«
There are 3 levels of IH/E: 1) Having a capsule
means, that you have methods for accessing the
data of the module. 2) Making the capsule
opaque means that you can only access the da-
ta through the methods (i.e. all fields are pri-
vate). 3) Making the capsule impenetrable
means that you avoid returning references to
mutable internal data structures. Either you
make them immutable or you create copies in
getter/setter methods.

↑MP, ↑LC, ↑FP, ⇅ KISS

design-types.net

PSU: Principle of Separate
 Understandability

PSU
»You shouldn’t need
to know other parts

for understanding this one.«
Each module (method/class/artifact/service/...)
should be understandable on its own. Under-
standing becomes a lot more difficult if you
cannot apply divide and conquer. Furthermore,
if something is not separately understandable,
this typically means either that a part of the
functionality does not belong here or the mod-
ule has the wrong abstraction.

↑LC, ↑MP, ↑ML, ⇅TdA/IE

design-types.net

TdA/IE: Tell don’t Ask/
 Information Expert

TdA/IE
»Functionality should be

where the data is.«

Instead of asking a module for data, processing
it, and putting it back afterwards, better just
delegate. This reduces complexity in those
modules which are already large (and may even
become god classes). So avoid getters and set-
ters in favor of methods containing domain
logic. In other words: Logic should be imple-
mented in that module that already has the
necessary data, that is the information expert.

↑IH/E, ↓PSU, ⇅SRP, ⇅LC

design-types.net design-types.net

design-types.net design-types.net

design-types.net

CF: Customer Focus

CF
»This is not

what the customer pays us for!«

If something is not requested, there has to be a
very good reason to do it. Anything in addition
costs additional time (also for removing or
maintaining it). It creates the additional risk of
more bugs and makes you responsible for it.
Continuously remember what was requested
e.g. by looking into the requirements or asking
the customer.

↑EaO, ↑YAGNI, ↓PoQ, ⇅FP

design-types.net

ICC: In the Concrete Case

ICC
»Your arguments are valid but

in the concrete case the
advantages won’t be important.«

Many arguments hold true in general but when
we look at the decision to be made, the effects
they describe are sometimes negligible. Yes,
low coupling is important, uniformity is helpful,
and flexibility is desirable. But these aspects
are sometimes crucial and sometimes irrele-
vant. So better focus on arguments that are rel-
evant in the concrete case instead of insisting
on aspects just to satisfy idealistic pettiness.

↑CF, ↑YAGNI, ↓PoQ, ↓PSPG

design-types.net

EaO: Early and Often

EaO
»Going online soon means

to get value and feedback soon.«

Business success is often built on being faster
than competitors. Building minimum viable
products and 80%-solutions facilitate a faster
time to market. Moreover the best feedback for
improvement comes after a release and is rare-
ly designed up front. So avoid perfectionism,
release early and often, and accept a certain
amount of technical debt.

↑FRD, ↑TP, ⇅PoQ, ⇅IR

design-types.net

UFT: Use Familiar Technology

UFT
»Using well-known technology
results in faster outcome and
fewer time-consuming bugs.«

Well known technologies are easier to handle
because you can focus on the job and you know
all the pitfalls. If you use unfamiliar technology,
you most likely won’t do that well at first. This
results in even more bugs and worse design. So
better use those technologies that all (current
and future) developers are most familiar with.

↑UP, ↑IR, ↓TP, ⇅ML

design-types.net design-types.net

design-types.net design-types.net

design-types.net

PoQ: Principle of Quality

PoQ
»Bad quality

kills us in the long run!«

It may be faster now, but we need to be fast
tomorrow, too. Bad quality frustrates maintain-
ers, makes fixing bugs harder and leads to huge
efforts for changes. This often starts by being
careless once. Don’t let a vicious circle begin.
Use metrics, adhere to the architecture, have a
high test coverage, apply code reviews and re-
factor continuously. Don’t be lazy.

↑LC, ↑ML, ↓CF, ⇅EaO

design-types.net

UP: Uniformity Principle

UP
»Solve similar problems

in the same way.«

Following UP reduces the number of different
solutions. There are fewer concepts to learn,
fewer problems to solve and fewer kinds of de-
fects that can occur. So have a consistent struc-
ture, a consistent naming scheme and use the
same mechanisms and libraries everywhere.
Prefer using the same approaches and not just
similar ones as subtle differences lead to bugs.

↑ML, ↑RoS, ↓ICC, ⇅KISS

design-types.net

MP: Model Principle

MP
»Program close

to the problem domain.«
Software should model and mirror the concepts
and actions of the real world. So avoid every-
thing that works “accidentally”. If it works acci-
dentally, it breaks accidentally. So be precise
with semantics. If you need to delete an order in
a data migration routine, call deleteOrder and
not cancelOrder—even if that currently does
the same. cancelOrder might get enhanced
such that it creates a reverse order which
wouldn’t be correct for data migration anymore.

↑ML, ↑TdA/IE, ⇅KISS, ⇅ADP

design-types.net

PSPG: A Penny Saved
 Is a Penny Got

PSPG
»It might not be a big advantage,

but it’s not a big cost either.«
Making little improvements a habit sums up to
a big advantage. This is the reason behind the
boy scout rule (“Leave the campground cleaner
than you’ve found it”). You don’t have to clean
the whole forest, but if everyone leaves the
campground just a little cleaner, we will have a
clean forest in the end. So if it’s not a big deal,
update libraries, improve documentation, and
refactor the modules you are currently touching
anyway.

↑PoQ, ↑EaO, ↑FRD, ↓CF

design-types.net design-types.net

design-types.net design-types.net

design-types.net

ML: Murphy’s Law

ML
»Avoid possibilities for something
to go wrong or to get misused.«

If there is a possibility for something to be used
in the wrong way (like supplying parameters in
the wrong order), it will eventually happen. So
better avoid possible future bugs by using de-
fensive programming, immutability, a common
naming scheme, avoiding duplication and com-
plexity.

↑FF, ↑EUHM, ↓ICC, ⇅KISS

design-types.net

IR: Instability Risk

IR
»Bleeding edge

often leads to blood and pain.«

New technology often comes with teething
problems. Using too unstable software, beta
versions of libraries, or anything that hasn’t
stood the test of time is risky. There may be
unknown bugs, nasty little quirks and compati-
bility issues no one has heard of, yet. This also
means that if you encounter these problems,
you will be one of the first to face them.

↑RoS, ↑UFT, ↓TP, ↓FRD

design-types.net

FF: Fail fast

FF
»Program defensively or you’ll
have a hard time debugging.«

If you don’t check your inputs, cascading fail-
ures can occur. This results in security prob-
lems and error messages which are hard to de-
cipher because they are not thrown at the posi-
tion of the actual fault. This may even lead to
situations where teams have to investigate fail-
ures which are not theirs. So log and throw an
error as soon as you realize a problem. The
earlier the better, so throwing a compile-time
error is preferable to run-time checks.

↑ML, ↑EUHM, ↓KISS, ⇅NFR

design-types.net

RoS: Rule of Standardization

RoS
»Adhering to standards makes
systems easier to understand

and reduces bugs.«
Sticking to standards reduces complexity. If you
are familiar with the standard, understanding
systems that adhere to it will be much easier.
Also, standards ensure a certain degree of inter-
operability and maturity. So use standard tech-
nologies, standard architectures, standard cod-
ing styles, standard formatting, standardized
checklists, etc. If there are no formal standards,
create your own in-house standard.

↑DRW, ↑NFR, ⇅KISS, ⇅TP

design-types.net design-types.net

design-types.net design-types.net

design-types.net

TP: Technological Progress

TP
»Progress must not be ignored
in a competitive environment.«

New technology is not only motivating but also
comes with benefits like more features, more
performance, better maintainability, and fixed
bugs. Furthermore, old technology won’t be
supported for much longer and new people
don’t know the old stuff anymore. Continuously
challenge existing solutions by evaluating alter-
natives.

↑FRD, ↓IR, ↓UFT, ⇅RoS

design-types.net

FRD: Frequency
 Reduces Difficulty

FRD
»If it hurts, do it more often!«

Typically, it’s easier and less effort to go small
steps continuously than to wait until there is a
huge gap to bridge. The pain will be bigger the
more you postpone it—break the cycle and up-
date to new versions, refactor regularly, merge
and release early and often. Doing something
more often, leads to more practice and fewer
mistakes.

↑ML, ↑EaO, ↓IR, ↓ICC

design-types.net

DRW: Don’t Reinvent the Wheel

DRW
»Focus on real challenges

instead of old ones.«
If something has already been solved, it’s prob-
ably solved in a better way than we will manage
to do in the time we have. No one would ever
reimplement a cache or a search algorithm ex-
cept it is one’s core competency. So focus on
the challenges of your core business and use
standards, libraries, and frameworks. They are
the core business of those people who create
and maintain them. They’ve solved many prob-
lems that we haven’t even thought of, yet.

↑EbE, ↓LC, ↓ICC, ⇅RoS

design-types.net

EbE: Experience
 by Experiments

EbE
»We’ll never know if we don’t try!«
Discussing advantages and disadvantages theo-
retically can be helpful but at a certain point
you will never know which variant is better if
you don’t try. So if you have a standard solution
to a problem, try the other one. Carefully but
regularly try out new frameworks and libraries,
new coding guidelines, architectural/design
patterns etc. in real-world projects. Failed ex-
periments will be refactored and successful ex-
periments will stay and become the new
standard.

↑TP, ↓IR, ↓CF, ⇅FP

design-types.net design-types.net

design-types.net design-types.net

?

design-types.net

Focus

?
»Are we still on the right track

or have we lost focus?«

Discussions are weird sometimes. You start
with the clear aim to decide whether solution A
or B is better and end up with a discussion on
something completely different. You easily get
lost in side issues or you heavily argue on some-
thing unimportant (“bike-shedding”). So clarify
the main topic of your discussion and keep the
focus on it.

?

design-types.net

Third Solution

?
»Are we discussing all relevant

possibilities?«

Sometimes we argue heavily if solution A or B
is better when in fact there is a third solution C
that may be preferable. So regularly ask your-
self (and your colleagues) whether there is a
solution that needs to be discussed, too.

?

design-types.net

The Right Time

?
»What will happen

if we don’t decide right now?«

A design decision should be taken as late in the
project as possible. But it’s likewise harmful to
take it too late. In order to find out if a decision
really needs to be made now, think about what
will happen, if the decision is deferred.

?

design-types.net

Stakeholders

?
»Do we have the needs of all

stakeholders in mind?«

Some decisions have influence on many stake-
holders—some of which are often forgotten.
Also, think about QA, Ops, etc.

design-types.net design-types.net

design-types.net design-types.net

?

design-types.net

Consequences

?
»What will happen

if we make the wrong decision?«

Think about possible impacts, chances of
occurrence, and possibilities to revert. If the
consequences are not bad at all, then it might
be better to shorten the discussion. If the con-
sequences are severe, there should be some
means of mitigation in place. In any case think
about the consequences of a decision.

?

design-types.net

Mutual Understanding

?
»Do we really understand

each other’s points of view?«

Sometimes a discussion gets stuck because of
misunderstandings or misinterpretations. Com-
monly that’s because everyone is busy explain-
ing their own point of view without trying to un-
derstand the other. If that’s the case, it is nec-
essary to realize that. Otherwise, there will be
no progress in the discussion.

?

design-types.net

From Scratch

?
»What would be the “real solution”

if we’d start from scratch?«

Often the solutions we come up with are tied to
the current state of the software. Our thinking
is restricted such that we do not consider cer-
tain possibilities. In such cases it is helpful to
neglect the circumstances of the current sys-
tem for a moment—think outside the box. Even
if the greenfield solution you then come up with
is not directly applicable, it’s often a starting
point for an alternative.

?

design-types.net

Best Solution for the User

?
»Do we really address
the real user’s needs?«

Not in every case the person who specifies
what to do is identical to the user of the system.
Wrong interpretations or misunderstandings
may lead to unsuitable solutions that do not sat-
isfy the real user’s needs. Every now and then,
you should ask yourself if you are still design-
ing a system that really helps those who will
eventually use it.

design-types.net design-types.net

design-types.net design-types.net

!

design-types.net

Mediator

!
»We cannot agree.

Let’s get some help!«

Sometimes a discussion gets stuck. In these
cases it is often advisable to ask another col-
league for an opinion or mediation. Usually a
colleague who hasn’t already participated in
the discussion, adds a new, unbiased perspec-
tive.

!

design-types.net

Team Decision

!
»The decision is too important

to take alone. Let’s have
the whole team decide!«

Important decisions which affect many people
like architectural decisions, big refactorings,
and external APIs should be taken by the whole
team. First, this typically results in better deci-
sions. Second, the team will be much more
committed to the decision. And third this fos-
ters knowledge transfer.

!

design-types.net

Divide and Conquer

!
»Actually we are mixing up

two aspects or two decisions.
Let’s discuss them separately.«

Design decisions get complicated or stuck if
there is actually more than one decision to
make. The discussion shifts from one topic to
the other and back again. This gets even worse
if nobody realizes that there is actually more
than one problem. Step back, find out which
decisions or problems there are and discuss
them separately.

!

design-types.net

Research

!
»Let’s have a look if there is
already a suitable solution.«

When making a decision, make sure that you
know all relevant solutions. Many problems
have already been solved. So before inventing
an own algorithm, have a look at libraries and
scientific papers. For certain design decisions
have a look at standards and patterns. Also,
consider researching code snippets for common
programming issues. Maybe there is even com-
mercial-off-the-shelf (COTS) or open-source
software you can leverage.

design-types.net design-types.net

design-types.net design-types.net

!

design-types.net

Flip a Coin

!
»That’s not worth the discussion!«

In some cases the difference between several
solutions is negligible. Or both the solutions
have their pros and cons without one being
superior to the other. It is then better to just
take the decision by flipping a coin than to
waste time in a lengthy and pointless discus-
sion.

!

design-types.net

Devil’s Advocate

!
»There is no real discussion,
and we risk missing a point.

Let’s appoint a devil’s advocate.«
Sometimes you agree too fast on a solution—
probably because you all have a similar way of
thinking. In such a case you can appoint some-
one who has to argue against that solution. A
similar problem occurs when none of you has a
strong tendency towards any of the solutions.
In such a case, for each solution appoint a rep-
resentative who tries to argument for this and
against the other solutions.

!

design-types.net

Product Owner Decides

!
»This has a significant impact
on the business, so we have to
talk with the product owner.«

Some technical decisions influence the product
itself. Often there is an impact on cost and time
and sometimes there are even legal issues.
Trade-offs include hosting an application in the
cloud (flexibility and time vs. privacy and cost),
adding a caching layer (performance vs. com-
plexity and cost), make-or-buy (time vs. flexibi-
lity and cost), etc. In those cases the decision is
not merely a technical one. Involve the PO.

!

design-types.net

Client Decides

!
»The client who calls the API
knows best how the ideal API

should look like.«
APIs need to be intuitive to those who use it
and sometimes it’s hard to predict if that’s the
case. Some decisions have an impact on how a
module can be used. Some use cases may get
simpler and others may get harder and less
intuitive. Better stop assuming you know what’s
best for the clients. Just ask and involve them in
your decision.

design-types.net design-types.net

design-types.net design-types.net

design-types.net

Joker

»I don't have a card for this,
but let me explain.«

That's OK. Don't feel restricted in the argu-
ments you use as long as they are valid. Maybe
you don't find the corresponding card fast
enough, maybe the card is not in your deck or
maybe there is no card for your argument. Nev-
er mind: If it's convincing, use it. Nevertheless,
limit yourself to a single and graspable argu-
ment.

design-types.net

Linked Arguments:
 ↑Complementary (adds further aspects)
 ↓Contrary (probably favors another solution)
 ⇅Both

Deck Building

There are many cards and using them all at the
same time can be quite unhandy. So you should
build a deck.

 • Start with the basic set () and get familiar
 with it.
 • Slowly add cards as you learn them and use
 those wich will be helpful in your environ-
 ment. This may especially depend on your
 team and project.
 • A good deck is tailored to the situation at
 hand. You will use other cards for code re-
 views than for architecture discussions.
 • A good deck is no larger than 20 cards.

Card Symbols

Card Set:

basic

extended

advanced

custom

design-types.net

Matthias Wittum Christian Rehn

The Authors

Design Types

Discussions can be quite exhausting, can't
they? Have a look at our free Design Types
questionnaire and learn more about yourself,
your colleagues and how to make discussions
even more productive.

→ design-types.net

Design Types

design-types.net

